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Early detection of mental health signals in social media text can enable timely interventions and reduce the risk of crises.
This paper presents a systematic study of encoder adaptation strategies for automated screening of mental-health in-
dicators in social media posts, with a primary focus on BERT-based encoders. Using a curated dataset labeled across
seven clinically informed categories, we compare frozen-encoder classifiers, full encoder fine-tuning, and parameter-
efficient approaches including low-rank adaptation (LoRA). Through extensive hyperparameter sweeps and controlled
ablations we evaluate layer-wise unfreezing schedules, encoder/classifier head learning-rate splits, and regularization
schemes. We show that full encoder fine-tuning achieves the highest classification performancewith a peak F1-score of
0.83, substantially outperforming frozen and low-rank alternatives while maintaining strong generalization and balanced
class sensitivity. Partial fine-tuning and LoRA offer notable compute and memory savings but require careful parame-
terization to avoid instability at large LoRA ranks. Overall, the findings demonstrate that a fine-tuned BERT encoder can
serve as a reliable foundation for early diagnostic support, provided its deployment remains grounded in ethical design
and clinical responsibility.
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1 Introduction

Mental health disorders affect hundreds of millions of individuals worldwide, yet many cases remain undiag-
nosed until symptoms reach critical severity. Early identification is vital, enabling timely intervention that
can prevent crises and mitigate the progression of serious conditions. Textual data offers an underexplored
but powerful diagnostic signal: social media posts, online forums, therapy transcripts, and personal writings
often encode linguistic patterns reflective of psychological states. Leveraging these linguistic cues through
natural language processing (NLP) provides a pathway toward proactive, data-driven mental health support.

Among contemporary NLP architectures, BERT (Bidirectional Encoder Representations from Trans-
formers) [1] stands as a foundation model. Built upon the Transformer encoder and driven by self-attention
mechanisms, BERT captures bidirectional contextual dependencies, enabling fine-grained semantic under-
standing. Its capacity to represent subtle linguistic nuances makes it particularly suited for identifying early
indicators of mental distress, including depression, anxiety, or suicidal ideation.

This work implements and fine-tunes a BERT-based model for multi-class mental health classification
across seven diagnostic categories: normal, depression, suicidal, anxiety, stress, bipolar, and personality dis-
order. We reconstruct BERT’s architecture from first principles, align it with pre-trained parameters, and
adapt it to a curated corpus of mental health discourse [2]. Beyond empirical performance, we examine the
broader implications of deploying BERT in clinical and online settings as depicted in Figure 1, where inter-
pretability, fairness, and ethical responsibility are as crucial as predictive accuracy. The main contributions
are as follows:

• Implement and fine-tune a BERT-based classifier for seven-way mental health diagnosis, evaluating
full encoder adaptation against frozen and low-rank (LoRA) fine-tuning schemes.

• Conduct systematic ablations on learning rate schedules, batch size, and dropout regularization to
quantify their influence on optimization stability and generalization.

* Academic work conducted for a class; not a formal publication.
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• Demonstrate that full encoder fine-tuning outperforms parameter-efficient methods by a large margin,
establishing it as a strong and interpretable baseline for early mental health detection in text.

I haven’t slept well for 2 days, it’s
like I’m restless. Why huh?

after being confessed, I’m really
nervous

this morning I smell really good!

Feel alienated and alone on NYE
every winter I get into a depression

my mom made me go to a camp that
she knows I hate

User 1: exhibiting signs 
of anxiety

User 2: exhibiting signs 
of anxiety

User 3: exhibiting signs 
of normal behavior

User 4: exhibiting signs 
of bipolar disorder

User 5: exhibiting signs 
of stress

Figure 1 End-to-end system for screening mental health signs in online discourse. A fine-tuned BERT analyzes
consented user posts scraped from social media, such as X (formerly Twitter) and Reddit, to identify patterns
suggesting early signs of mental illness, facilitating potential professional intervention.

2 Methods

2.1 Theoretical overview of BERT
BERT was introduced by Devlin et al. [1] as the first deeply bidirectional, fine-tuning-based language rep-
resentation model. BERT conditions on both left and right context at every layer. This design enables it
to capture richer semantics crucial for tasks requiring nuanced understanding, including mental health text
classification as depicted in Figure 2. The empirical strength of BERT lies in its ability to generalize across
tasks without heavy task-specific architectures. Its broad linguistic pre-training provides general knowledge
of semantics, while fine-tuning adapts these representations to sensitive domains such as online mental health
discourse. This dual capacity makes BERT particularly effective for detecting early warning signals in text,
where meaning often depends on subtle variations in tone, phrasing, and context. At its core, BERT is a
multi-layer Transformer encoder [3], with self-attention as the central operation. Given an input sequence of
n tokens {x1, . . . , xn}, each token is mapped into a hidden vector, forming the input matrix H(0) ∈ Rn×H

to the first encoder block. For a single attention head, the output is

Attention(Q,K, V ) = Softmax

(
QK⊤
√
dh

)
V, (1)

where the query, key, and value projections are

Q = H(0)WQ, K = H(0)WK , V = H(0)WV ,

with WQ,WK ,WV ∈ RH×dh and dh = H/h the per-head dimension. Multi-head attention applies h such
projections in parallel, concatenates the resulting head outputs, and projects them back to RH , enabling the
model to capture dependencies across multiple representational subspaces. Each encoder block then combines
multi-head self-attention with a position-wise feed-forward network, joined via residual connections and layer
normalization.
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[SEP]
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Figure 2 Fine-tuning BERT for classification. The model is initialized with pre-trained parameters, processes input
tokens {T1, . . . , Tn} with special tokens [CLS] and [SEP], and extracts the final hidden state EL

[CLS]. A pooling layer
maps EL

[CLS] into the pooled representation ci, which is then passed to the classifier head for task-specific prediction.

BERT uses WordPiece embeddings with a 30K-token vocabulary [1]. Input representation is formed by
summing token, segment, and positional embeddings as shown in Figure 3. The special tokens [CLS] and
[SEP] serve as classification anchors and segment delimiters, respectively. For classification tasks, the final
hidden state corresponding to [CLS] (denoted C ∈ RH) is fed into a task-specific output layer, where H is
the size of the contextualized embeddings output by the last BERT encoder layer.

Pre-training objectives. The original BERT framework is trained on two unsupervised tasks. The first is
masked language modeling (MLM), inspired by the Cloze task [4], where 15% of tokens are masked and the
model predicts the original token identity. This forces the encoder to build deep bidirectional representations.
The second is next sentence prediction (NSP), where the model predicts whether sentence B follows sentence
A in the corpus. Together, MLM and NSP encourage both token-level understanding and inter-sentence
coherence.

Fine-tuning for mental health detection. Once pre-trained on large corpora, specifically BooksCorpus (800M
words) [5] and English Wikipedia (2.5B words), BERT is fine-tuned for downstream tasks with minimal
modifications. For early detection of mental illness, the final hidden state of the [CLS] token, EL

[CLS] =

H
(L)
i,[CLS], is passed through a pooler layer to obtain ci ∈ RH , which serves as the sequence representation.

This pooled embedding is then fed to a classifier head that maps it into diagnostic categories (e.g., depression,
anxiety, suicidal), as illustrated in Figure 2. The classifier head computes logits zi ∈ RK for K classes,
followed by softmax probabilities:

p(yi = k | ci) =
exp(zi,k)∑K
j=1 exp(zi,j)

. (2)

and is trained with cross-entropy loss:

L = − 1

B

B∑
i=1

log pi,yi
, (3)
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Figure 3 BERT input embeddings, computed as the sum of its component vectors: E = VE + SE +PE. Here, VE
is the token embedding, SE is the segment embedding, and PE is the absolute position embedding.

where B is the batch size, yi is the gold label for instance i, and pi,yi is the probability assigned by the
model to the correct class. The bidirectional self-attention mechanism is particularly important in this
domain: figurative expressions such as “I am drowning in work” must be distinguished from genuine indi-
cations of distress, while symptom-specific phrasing like “I cannot get out of bed anymore” directly signals
clinical depression. By conditioning on the entire sequence, BERT leverages full contextual information to
disambiguate figurative language from clinically relevant symptom descriptions.

2.2 Mental health dataset
We conduct our experiments on the Sentiment Analysis for Mental Health dataset available on Kaggle, a
curated collection of user-generated text annotated for mental health classification [2]. The dataset aggregates
and cleans raw data from multiple sources, including Reddit posts, Twitter discussions, chatbot conversation
datasets [6, 7, 8, 9, 10, 11, 12, 13, 14], and prior Kaggle corpora on depression, stress, anxiety, bipolar disorder,
and suicidal ideation. By consolidating these sources into a unified resource, the dataset provides a broad
and diverse representation of language associated with different psychological states. Sampled statements
along with corresponding labels are shown in Table 1. Figure 4 reveals a right-skewed distribution, where the
majority of textual statements across training, validation, and test splits contain fewer than 200 tokens. Each
statement is paired with one of seven labels: normal, depression, suicidal, anxiety, stress, bipolar, and
personality disorder. The dataset composed of 52,681 online texts was divided into training, validation,
and test sets (70%, 10%, 20%) to facilitate fair assessment of predictive performance.

Table 1 Sampled statements for each label from the dataset.

Statement Label

I’m feeling happy today normal
I recently went through a breakup and she said she ... depression
I have so many stressors in my life, all major things ... suicidal
Have you ever felt nervous but didn’t know why? anxiety
Head noise, intrusive thoughts, obsessive ... bipolar
Is it normal to feel a gurgling in your chest ... stress
I feel like I’ve missed out on my teenage year... personality disorder

The statements are informal and conversational, reflecting the fragmented, colloquial style typical of on-
line discourse rather than long-form narratives. This makes the dataset particularly valuable for evaluating
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Figure 4 Token count distribution across the training, validation, and test splits. Most samples are short, clustering
below 200 tokens, with a long tail extending toward the 512-token maximum limit. The vertical line denotes the
truncation boundary used during pre-processing to fit the BERT tokenizer’s sequence length constraint.

Transformer-based models, which must capture subtle variations in tone, phrasing, and context. However,
the dataset is inherently imbalanced, with classes such as normal and depression appearing more frequently
than rarer categories like bipolar or personality disorder. The small fraction of samples approaching
the 512-token boundary suggests that truncation minimally affects data coverage, preserving most semantic
content. The alignment of training, validation, and test curves further confirms consistent token length
distributions across splits, reducing the risk of length-induced bias during training. Overall, these character-
istics validate the chosen pre-processing pipeline and justify using a fixed sequence length of 512 for efficient
batching without sacrificing representational coverage.

2.3 Fine-tuning BERT for downstream transfer
We adapt a pre-trained BERT model to the mental health classification task by attaching a lightweight
classifier head and updating (most or all) encoder parameters using supervised signals. This subsection
details the exact computational pathway from raw text to loss, decomposing every module involved in the
forward and training passes. Our goal is to make fine-tuning transparent and reproducible.1

Input processing. Each raw statement is tokenized with WordPiece, originally proposed by Schuster and
Nakajima [15], via bert-base-uncased tokenizer yielding a sequence of token IDs:

[[CLS], x1, x2, . . . , xn, [SEP]],

truncated or padded to fixed length n ≤ nmax. We set n = 512 based on the nmax from the original BERT
tokenizer configuration. We build: input_ids (token indices), token_type_ids (all zeros for single-sequence
classification), and attention_mask (1 for real tokens, 0 for padding). These feed the embedding stack.

Embedding layer. The embedding module produces the initial continuous representation

Ei = W (tok)xi +W (pos)i+W (seg)si, i = 0, . . . , n− 1, (4)

where VE = W (tok) ∈ RV×H , PE = W (pos) ∈ Rnmax×H , SE = W (seg) ∈ R2×H , and H is the hidden size. A
LayerNorm-Dropout pair normalizes and regularizes:

Ẽi = Dropout(LayerNorm(Ei)) . (5)
1Experiments run on a single NVIDIA A100 GPU; seed used is 42.
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Transformer encoder stack. BERT applies L identical encoder blocks. For block ℓ ∈ {1, . . . , L} and token
position i:

(i) Multi-head attention: Z
(ℓ)
i = MHA

(
H(ℓ−1);mask

)
,

(ii) Residual + LayerNorm: Ĥ
(ℓ)
i = LayerNorm

(
H

(ℓ−1)
i +Dropout(Z

(ℓ)
i )
)
,

(iii) Feed-forward (GELU): F (ℓ)
i = ϕ

(
Ĥ

(ℓ)
i W1 + b1

)
W2 + b2,

(iv) Residual + LayerNorm: H
(ℓ)
i = LayerNorm

(
Ĥ

(ℓ)
i +Dropout(F

(ℓ)
i )
)
,

(6)

where ϕ is GELU. Each head computes:

Headk = Softmax

(
(HWQ

k )(HWK
k )⊤ +M√

dh

)
(HWV

k ), (7)

with WQ
k ,WK

k ,WV
k ∈ RH×dh , dh = H/h, and M the additive mask (−∞ for padding). Heads are concate-

nated and projected:
MHA(H) =

[
Head1 | · · · | Headh

]
WO, (8)

where the concatenation yields a tensor in Rn×(h·dh), and WO ∈ R(h·dh)×H projects it back into the model’s
hidden dimension H.

Pooler. Although the original BERT paper does not explicitly mention a pooling step, common implemen-
tations (e.g., Hugging Face [16]) insert a small projection before the classifier head. The pooler takes the
final hidden state of the [CLS] token and applies a linear transformation followed by a tanh nonlinearity:

ci = tanh
(
H

(L)
i,[CLS]W

(pool) + b(pool)), (9)

where EL
[CLS] = H

(L)
i,[CLS] ∈ RH is the last-layer [CLS] embedding of instance i, and W (pool), b(pool) are learned

parameters with W (pool) ∈ RH×H . The pooled representation ci is then passed to the classifier head.

Classifier head. From the [CLS] embedding ci ∈ RH of instance i, the classifier head computes

zi = ciW
(cls) + b(cls) ∈ RK , (10)

pi = Softmax(zi), (11)

Lw = − 1

B

B∑
i=1

αyi
log pi,yi

, (12)

where αyi
denotes the weight assigned to the gold label yi. We introduce the per-class weights αc for c ∈ C

(so αyi = αc with c = yi); the αc are computed from class relative frequencies portionc via inverse-frequency
normalization:

αc =

1

portionc

|C|∑
j=1

1

portionj

(c ∈ C), (13)

which ensures
∑

c∈C αc = 1. For clarity, the relative frequency portionc is

portionc =
nc∑|C|
j=1 nj

, (14)

where nc is the number of examples of class c. As shown in Table 2, the computed weights explicitly enforce
this imbalance correction, ensuring that the rarest class (personality disorder) receives the strongest
influence during training. By construction, the corresponding weights satisfy the inverse ordering:

αnormal < αdepression < αsuicidal < αanxiety < αbipolar < αstress < αpersonality disorder.
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Table 2 Class distribution sorted from least to most frequent, with normalized inverse-frequency weights. Lower
portions (↓) correspond to higher weights (↑), highlighting the imbalance correction.

Class Portion (↓) Weight α (↑)

personality disorder 0.02 0.43
stress 0.05 0.17
bipolar 0.05 0.18
anxiety 0.07 0.04
suicidal 0.20 0.03
depression 0.29 0.03
normal 0.31 0.12

Freezing vs. full fine-tuning. We consider two regimes. In the frozen encoder setting, all Transformer param-
eters remain fixed and only the classifier head (Wcls, bcls), and optionally the final LayerNorm scales and
biases, are updated. This probes the sufficiency of generic pretrained semantic priors without domain-specific
adaptation. In contrast, full fine-tuning updates the entire parameter set, allowing token- and phrase-level
representations to adjust to subtle domain cues critical for mental health detection.

Optimization and parameter grouping. We use the AdamW optimizer [17], which augments Adam [18] with
decoupled weight decay, ensuring stable convergence in fine-tuning. Parameters are partitioned into two
groups with distinct learning rates: the encoder group (all Transformer weights) with ηenc ∈ {9.3×10−6, 1.3×
10−5, 2.7×10−5}, and the classifier head with elevated ηhead ∈ {1.3×10−3, 2.7×10−3, 9.6×10−3}. This “two-
tier” scheme accelerates adaptation of the randomly initialized head while preserving pretrained linguistic
structure in the encoder. We adopt AdamW with (β1, β2, ϵ) = (0.9, 0.999, 10−8), and decoupled weight decay
λ = 0.01 applied only to non-bias and non-normalization parameters:

θt+1 = θt − η · m̂t√
v̂t + ϵ

− η · λθt, (15)

where m̂t, v̂t are Adam’s bias-corrected first- and second-moment estimates. Gradient clipping (global norm
= 1.0) is additionally employed to prevent rare exploding updates.

Learning rate (LR) schedule. We employ a linear warmup for the first Twarm = 500 steps, followed by cosine
decay until Tdecay = 30,000 steps, with a floor of ηmin = 10−7. For step index t, the schedule is given by

η(t) =


η0 ·

t

Twarm
, 0 ≤ t < Twarm,

ηmin + 1
2

(
1 + cos

(
π · t−Twarm

Tdecay−Twarm

))
· (η0 − ηmin), Twarm ≤ t ≤ Tdecay,

ηmin, t > Tdecay.

(16)

Here η0 is the peak LR for each parameter group (encoder ηenc, classifier head ηhead). Both groups share
the same warmup and decay schedule. Warmup mitigates early training instability when gradients from a
randomly initialized head backpropagate into pre-trained layers, while cosine decay prevents over-shooting
and provides a smooth annealing toward ηmin.

Regularization. Dropout is the primary stochastic regularizer with default dropout rate pdropout = 0.1 (ab-
lations at pdropout = {0.2, 0.3}). Increasing pdropout modestly reduces overfitting but slows convergence by
attenuating signal flow in attention and feed-forward layers. No label smoothing was applied; class distribu-
tions remain one-hot, preserving sharp decision boundaries that aid minority-class recall.

Training loop pseudocode. Algorithm 1 outlines the fine-tuning procedure. For each epoch, batches of to-
kenized inputs (input_ids, type_ids, mask, y) are embedded and passed through L encoder blocks, each
following the update rules in Equation 6. Within these, multi-head attention (Equations 7–8) contextualizes
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Algorithm 1 BERT supervised fine-tuning (SFT)

1: for step t = 1 to T do
2: for batch (input_ids, type_ids, mask, y) do
3: H ← Encoder(input_ids, type_ids, mask)
4: c← H[[CLS]]
5: z ← cWcls + bcls
6: p← softmax(z)
7: L ← − 1

B

∑
i log pi,yi

8: Backpropagate ∇L
9: Update encoder params with LR ηenc(t) (if unfrozen)

10: Update head params with LR ηhead(t)
11: end for
12: Evaluate on validation set; save best checkpoint by F1-score
13: end for

tokens bidirectionally. After the final layer, the pooled [CLS] embedding c is obtained and transformed into
logits using the classifier head in Equation 10. Softmax then yields class probabilities (Equation 11), and
the loss is computed as cross-entropy (Equation 12). Gradients are backpropagated; encoder parameters are
updated with learning rate ηenc(t) if unfrozen, while the classifier head uses ηhead(t). Following each epoch,
validation performance is monitored, and the best checkpoint is saved according to F1-score.

3 Results and discussion

Tables 3–5 present the performance of our BERT-based classifier under different learning rates, batch sizes,
and fine-tuning strategies. We evaluate accuracy, precision, recall, and F1-score for both frozen and fully
fine-tuned BERT models.

Table 3 Performance with BERT learning rate 9.3× 10−6 and classifier head learning rate 9.6× 10−3.

Batch size Epochs Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑) Full FT

8 2 0.5149 0.5625 0.4417 0.4948 ✗

8 3 0.5402 0.5785 0.4689 0.5180 ✗

8 4 0.5183 0.6173 0.3419 0.4400 ✗

8 2 0.8254 0.7873 0.8344 0.8102 ✓
8 3 0.8210 0.7710 0.8385 0.8033 ✓
8 4 0.8225 0.7984 0.8435 0.8203 ✓

16 2 0.5624 0.5065 0.4815 0.4937 ✗

16 3 0.5522 0.5051 0.5337 0.5190 ✗

16 4 0.5699 0.5133 0.5175 0.5154 ✗

16 2 0.8159 0.7620 0.8316 0.7953 ✓
16 3 0.8213 0.7867 0.8420 0.8134 ✓
16 4 0.8184 0.7956 0.8351 0.8149 ✓

32 2 0.5520 0.5142 0.4890 0.5013 ✗

32 3 0.6035 0.5421 0.5201 0.5309 ✗

32 4 0.6321 0.5756 0.5275 0.5505 ✗

32 2 0.7905 0.7149 0.8153 0.7618 ✓
32 3 0.8107 0.7687 0.8229 0.7949 ✓
32 4 0.8201 0.8085 0.8094 0.8089 ✓

Fine-tuning drives performance. Tables 3–5 demonstrate the sharp contrast between frozen BERT encoders
and full fine-tuning. With a frozen backbone, F1-scores plateau between 0.44 and 0.55 across all batch sizes
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Table 4 Performance with BERT learning rate 2.7× 10−5 and classifier head learning rate 2.7× 10−3.

Batch size Epochs Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑) Full FT

8 2 0.6263 0.5432 0.4943 0.5176 ✗

8 3 0.5875 0.4853 0.5514 0.5162 ✗

8 4 0.6202 0.5363 0.5626 0.5491 ✗

8 2 0.8250 0.7980 0.8220 0.8098 ✓
8 3 0.8277 0.8006 0.8345 0.8172 ✓
8 4 0.8383 0.8146 0.8432 0.8287 ✓

16 2 0.5993 0.5266 0.5354 0.5310 ✗

16 3 0.6262 0.5275 0.5579 0.5423 ✗

16 4 0.6195 0.5100 0.5645 0.5359 ✗

16 2 0.8239 0.7702 0.8232 0.7958 ✓
16 3 0.8305 0.7895 0.8428 0.8152 ✓
16 4 0.8328 0.7918 0.8387 0.8146 ✓

32 2 0.5481 0.4832 0.4820 0.4826 ✗

32 3 0.5781 0.5022 0.5597 0.5294 ✗

32 4 0.5813 0.5323 0.5420 0.5371 ✗

32 2 0.7728 0.7521 0.8181 0.7837 ✓
32 3 0.8146 0.7761 0.8379 0.8058 ✓
32 4 0.7965 0.7725 0.8302 0.8004 ✓
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Figure5 Normalized confusion matrix of the best-performing model checkpoint under full fine-tuning. Values represent
class-wise prediction proportions normalized by true label counts. The model achieves strong discrimination across
most categories, with highest recall for normal and suicidal classes, and minor confusion between semantically
related conditions such as depression and suicidal, and between anxiety and personality disorder.
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Table 5 Performance with BERT learning rate 1.3× 10−5 and classifier head learning rate 1.3× 10−3.

Batch size Epochs Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑) Full FT

8 2 0.6224 0.5483 0.4720 0.5073 ✗

8 3 0.6036 0.5323 0.5196 0.5259 ✗

8 4 0.6517 0.5443 0.5413 0.5428 ✗

8 2 0.8223 0.7781 0.8415 0.8085 ✓
8 3 0.8402 0.8187 0.8417 0.8301 ✓
8 4 0.8368 0.8137 0.8453 0.8292 ✓

16 2 0.5350 0.5133 0.4935 0.5032 ✗

16 3 0.5890 0.5060 0.4776 0.4914 ✗

16 4 0.6369 0.5211 0.5705 0.5447 ✗

16 2 0.8001 0.7666 0.8076 0.7866 ✓
16 3 0.8257 0.7651 0.8284 0.7955 ✓
16 4 0.8394 0.8115 0.8491 0.8299 ✓

32 2 0.5618 0.5027 0.5078 0.5053 ✗

32 3 0.6113 0.5505 0.5011 0.5247 ✗

32 4 0.6107 0.5029 0.5753 0.5366 ✗

32 2 0.8036 0.7725 0.8259 0.7983 ✓
32 3 0.8294 0.7934 0.8413 0.8166 ✓
32 4 0.8200 0.7809 0.8465 0.8124 ✓

and epochs. In contrast, full fine-tuning consistently surpasses 0.80, even under modest hyperparameter
settings. For example, at batch size 32 and four epochs in Table 3, freezing BERT yields an F1-score of
0.5505, while full fine-tuning reaches 0.8089, an absolute gain of more than 25 points. This large gap reflects
the inability of static embeddings to reallocate representational emphasis toward domain-specific lexical cues,
such as idiomatic expressions of ideation. Fine-tuning allows attention heads to retune inter-token salience
and feed-forward filters to sharpen nonlinear decision boundaries, whereas the shallow classifier head alone
cannot compensate for a misaligned latent geometry. This is because a frozen encoder supplies generic
embeddings trained on BERT’s pre-training data which capture broad semantics but fail to adapt to the
distinct discourse of mental health text from online forums. Figurative language such as “I feel like I’m
drowning in my own thoughts” and symptom-specific phrasing like “I haven’t slept in three nights” require
encoder-level adaptation to map these domain cues to clinically relevant categories. The decisive gains from
fine-tuning confirm that domain adaptation of the encoder is indispensable for reliable early detection.

The normalized confusion matrix of the fully fine-tuned BERT model shown in Figure 5 reveals strong
per-class separability, confirming that full encoder adaptation enables precise differentiation of nuanced
mental health expressions. The model achieves near-perfect discrimination for the normal class and robust
performance on clinically significant labels such as suicidal and bipolar. Residual misclassifications pri-
marily occur between conceptually and linguistically related categories. depression and suicidal posts
share overlapping emotional tone and lexical cues (e.g., hopelessness, self-harm intent), while anxiety and
personality disorder exhibit common affective markers like panic, instability, or self-doubt. These bound-
ary confusions are expected in real-world text, where mental health narratives often exhibit comorbid or am-
biguous patterns. Overall, the structure of the confusion matrix confirms that full fine-tuning allows BERT
to capture fine-grained distinctions across disorders while maintaining balanced sensitivity and specificity.

Learning rateandconvergence. We also tested three learning rate configurations to evaluate how optimization
dynamics differ between frozen and fully fine-tuned models. When BERT is frozen, higher learning rates for
the classifier head accelerate convergence, because the classifier head alone must adapt to static embeddings.
For instance, with BERT (backbone) learning rate fixed at 2.7 × 10−5 and the classifier head trained at
2.7 × 10−3 (Table 4), the model quickly attains F1-scores above 0.80 under full fine-tuning but stalls near
0.52 when the encoder is frozen.

For fully fine-tuned models, peak performance arises with moderate learning rates. Excessively high rates
destabilize encoder weights and degrade the rich linguistic priors captured during pre-training, a phenomenon
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Figure 6 Training and validation dynamics for the best-performing configurations across three learning rate regimes:
Q (ηBERT = 1.3× 10−5, ηhead = 1.3× 10−3), W (ηBERT = 2.7× 10−5, ηhead = 2.7× 10−3), and E (ηBERT = 9.3× 10−6,
ηhead = 9.6× 10−3), all with dropout 0.1. Highlighted curves mark the best checkpoint’s performance. Each subplot
shows (left) training loss versus iteration, (middle) validation loss versus epoch, and (right) validation F1-score versus
epoch. BS: batch size, NE: number of training epochs.

akin to catastrophic forgetting, while excessively low rates slow adaptation. As shown in Figure 6, the
configuration labeled Q (ηBERT = 1.3× 10−5, ηhead = 1.3× 10−3) achieves the most stable convergence, with
steadily decreasing loss and consistently improving validation F1-score. In contrast, W (ηBERT = 2.7× 10−5,
ηhead = 2.7 × 10−3) shows oscillations indicative of mild overfitting, while E (ηBERT = 9.3 × 10−6, ηhead =
9.6× 10−3) converges slowly, suggesting underfitting due to insufficient encoder updates.

The optimal setting, corresponding to configuration Q and Table 5, yields the best F1-score of 0.8301
at batch size 8 and three epochs. This balance allows the encoder to adjust gradually while the classifier
head tracks domain-specific decision boundaries. Distinct learning rates for head and encoder therefore play
a critical role: they prevent catastrophic forgetting, stabilize optimization, and ensure convergence toward
domain-adapted representations.

Batch size effects. Batch size further shapes the trade-off between convergence speed and stability. Smaller
batches, such as size 8, produce faster initial improvements due to more frequent weight updates. This
stochasticity injects beneficial gradient noise that helps escape sharp local minima under skewed distributions.
Larger batches, such as size 32, yield steadier convergence across epochs and reduce variance in validation
performance. This pattern is evident in Tables 3–5: batch size 8 reaches F1-scores above 0.82 within
three epochs, while batch size 32 converges more gradually but stabilizes around 0.81-0.82. Thus, smaller
batches act as implicit regularization through noisy gradients, while larger ones promote smoother but less
exploratory updates.

Class imbalance and sensitivity. The dataset also inherits the imbalance common in internet-derived mental
health forums, where certain categories such as general stress appear more frequently than severe conditions
like suicidal ideation. Without full fine-tuning, the model tends to collapse onto majority classes, as reflected
in frozen backbone recall scores that drop as low as 0.34 (Table 3). Once fine-tuned, recall improves markedly,
rising above 0.83 in the best runs. This improvement arises because encoder adaptation redistributes repre-
sentational capacity to minority categories. Rare but critical expressions, such as “I bought a rope yesterday
and don’t know why”, are unlikely to be frequent in the training set; static embeddings struggle to elevate
such sequences into meaningful decision boundaries. Fine-tuning allows attention weights to shift toward
these signals, producing balanced precision and recall even under imbalance. In high-stakes applications,
recall is particularly important, since missing a positive case can have severe consequences, whereas false
positives can often be resolved through human review.
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Impact of dropout. Table 6 and Figure 7 jointly examine the effect of varying dropout rates on training
stability and generalization. The results reveal a decisive conclusion: full fine-tuning consistently surpasses
frozen backbone training across all dropout settings. At pdropout = 0.1, the model achieves the most stable
convergence and the highest F1-score of 0.8301, representing a gain of over 30 absolute points relative
to the frozen encoder baseline. Accuracy, precision, and recall all improve markedly, with recall showing
the greatest increase indicating that moderate regularization enhances minority-class sensitivity without
disrupting learned attention patterns.

Table 6 Performance with batch size 8, no. of training epochs 3, BERT learning rate 1.3 × 10−5, classifier head
learning rate 1.3× 10−3, and varying dropout rates (pdropout ∈ {0.1, 0.2, 0.3}).

pdropout Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑) Full FT

0.1 0.6036 0.5323 0.5196 0.5259 ✗

0.2 0.5812 0.5286 0.5029 0.5154 ✗

0.3 0.5825 0.4865 0.4998 0.4930 ✗

0.1 0.8402 0.8187 0.8417 0.8301 ✓
0.2 0.8277 0.7884 0.8487 0.8175 ✓
0.3 0.8355 0.7993 0.8430 0.8205 ✓
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Figure 7 Training and validation loss/F1-score curves for different dropout rates (pdropout ∈ {0.1, 0.2, 0.3}) under full
fine-tuning. The model with pdropout = 0.1 achieves the most stable convergence and highest F1-score, while higher
dropout rates lead to slower recovery and greater variance, indicating excessive regularization.

The training curves further confirm that higher dropout rates (pdropout ∈ {0.2, 0.3}) lead to slower
recovery and greater variance between training and validation F1-scores, a sign of underutilized capacity and
over-regularization. In contrast, pdropout = 0.1 produces a smooth, monotonic decline in loss and a stable
rise in F1-score, signifying an optimal balance between regularization and gradient flow. When the encoder
is frozen, dropout variation has negligible effect, with F1-score fluctuating narrowly between 0.49 and 0.53.
Thus, once encoder adaptation is enabled, dropout tuning becomes secondary, with optimal performance
plateauing near pdropout = 0.1.

Low-rank adaptation (LoRA) fine-tuning. Table 7 reports the impact of LoRA rank and injection points on
model performance. LoRA on the QKV projection layers consistently offered the best trade-off between
accuracy and parameter efficiency. At rank 64, QKV-LoRA achieved 0.747 accuracy and 0.718 F1-score
while updating only 3.14% of parameters, suggesting that attention-level adaptation is more effective than
modifying the pooler or dense feedforward layers. Here, dense refers exclusively to all feedforward layers,
excluding QKV projections, while all covers all linear layers.

LoRA on dense or all layers caused substantial performance drops despite higher trainable parameter
counts, likely due to overparameterization and interference with pre-trained weights. Interestingly, increasing
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the rank from 8 to 512 did not improve downstream performance; in fact, high-rank LoRA often collapsed
accuracy to near random-chance. This counterintuitive behavior indicates that excessive adaptation capac-
ity can destabilize optimization, particularly under small-batch and limited-data regimes, and that merely
increasing rank does not guarantee better feature learning. Overall, attention-level LoRA, particularly on
QKV, achieves efficient specialization with minimal overhead, while pooler-level injection offers moderate
gains and dense- or all-layer LoRA proves largely ineffective. Future work could explore hybrid or sparse
strategies to balance adaptability and stability.

Table7 Performance of LoRA fine-tuning with batch size 8, 3 training epochs, BERT learning rate 1.3×10−5, classifier
head learning rate 1.3 × 10−5, and LoRA scaling factor 32. The “Applied to” column indicates which layers the
LoRA weights are injected: all = all dense layers, pooler = pooler dense layer only, QKV = attention projection
matrices, dense = all feedforward dense layers excluding QKV projections and pooler dense layer.

Rank Applied to Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑) Trainable params.

8 pooler 0.6325 0.5089 0.541 0.5245 17,671 (0.02%)
8 QKV 0.7288 0.6794 0.7415 0.7091 447,751 (0.41%)
8 dense 0.7281 0.6792 0.6967 0.6878 742,663 (0.67%)
8 all 0.3102 0.0443 0.1429 0.0677 1,344,775 (1.21%)

64 pooler 0.6361 0.5344 0.5884 0.5601 103,687 (0.09%)
64 QKV 0.7474 0.7012 0.7353 0.7178 3,544,327 (3.14%)
64 dense 0.4541 0.1271 0.2465 0.1677 5,903,623 (5.12%)
64 all 0.3102 0.0443 0.1429 0.0677 10,720,519 (8.92%)

512 pooler 0.706 0.6047 0.6792 0.6398 791,815 (0.72%)
512 QKV 0.3102 0.0443 0.1429 0.0677 28,316,935 (20.55%)
512 dense 0.3102 0.0443 0.1429 0.0677 47,191,303 (30.12%)
512 all 0.3102 0.0443 0.1429 0.0677 85,726,471 (43.92%)

Increasing the batch size from 8 to 32 led to more stable gradient updates and mitigated the performance
collapse seen at higher ranks. As shown in Table 8, the QKV and dense configurations both achieved sub-
stantial gains (F1-scores of 0.76 and 0.75, respectively) at rank 64, while pooler-only adaptation improved
moderately. However, all-layer injection continued to fail, suggesting persistent instability in overparame-
terized LoRA setups even under smoother optimization.

Table 8 Performance of LoRA fine-tuning with batch size 32 across different injection points and ranks.

Rank Applied to Accuracy (↑) Precision (↑) Recall (↑) F1-score (↑)

64 pooler 0.6187 0.5190 0.5689 0.5428
64 QKV 0.7838 0.7258 0.7979 0.7601
64 dense 0.7770 0.7033 0.7926 0.7453
64 all 0.2022 0.0289 0.1429 0.0481

512 pooler 0.6410 0.5550 0.6403 0.5946
512 QKV 0.7531 0.6948 0.7344 0.7141
512 dense 0.2022 0.0289 0.1429 0.0481
512 all 0.3102 0.0443 0.1429 0.0677

4 Conclusion

Full fine-tuning of BERT proved essential for accurate detection of early mental health signals in online text,
yielding an F1-score of 0.83 through balanced encoder-head learning rates and moderate dropout. Encoder
adaptation emerged as the key determinant of domain transfer, enabling robust contextual understanding of
psychological cues. In contrast, LoRA-based adaptation underperformed due to overparameterization and
interference between injected and pre-trained weights, highlighting stability limits in low-rank adaptation.
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These results affirm the importance of principled fine-tuning for sensitive, domain-specific language tasks.
Future deployment of such models must prioritize fairness, transparency, and privacy to ensure ethical and
socially responsible application in mental health contexts.
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